A priori error analysis of high-order LL* (FOSLL*) finite element methods
نویسندگان
چکیده
A number of non-standard finite element methods have been proposed in recent years, each which derives from a specific class PDE-constrained norm minimization problems. The most notable examples are LL? methods. In this work, we argue that all high-order should be expected to deliver substandard uniform h-refinement convergence rates. fact, one may not even see rates proportional the polynomial order p>1 when exact solution is constant function. We show rate limited by regularity an extraneous Lagrange multiplier variable naturally appears via saddle-point analysis. turn, appear because determined, part, geometry domain. Numerical experiments support our conclusions.
منابع مشابه
Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods
We derive in this paper a unified framework for a priori and a posteriori error analysis of mixed finite element discretizations of second-order elliptic problems. It is based on the classical primal weak formulation, the postprocessing of the potential proposed in [T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for secondorder elliptic problems, Math. ...
متن کاملA priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
* Correspondence: zulianglux@126. com College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, PR China Full list of author information is available at the end of the article Abstract In this article, we investigate a priori error estimates for the optimal control problems governed by elliptic equations using higher order variational discretization and mixed finite elem...
متن کاملDiscontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates
Abstract. For elliptic interface problems in two and three dimensions, this paper studies a priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in th...
متن کاملDiscontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations
Discontinuous Galerkin (DG) finite element methods were studied by many researchers for second-order elliptic partial differential equations, and a priori error estimates were established when the solution of the underlying problem is piecewise H3/2+ smooth with > 0. However, elliptic interface problems with intersecting interfaces do not possess such a smoothness. In this paper, we establish a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2021
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2021.10.015